A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics
نویسندگان
چکیده
[1] We use a nonlocal viscoelastic damage model to investigate the conditions that enable water-free surface crevasse propagation in grounded marine-terminating glaciers. Our simulations, on idealized rectangular ice slabs in contact with the ocean, show that crevasses propagate faster in thicker ice slabs. We find that: (1) the fraction of ice slab thickness penetrated by surface crevasses decreases with increasing seawater depth near the terminus; (2) a no-slip (fixed) basal boundary condition retards crevasse growth; and (3) crevasses form closer to the terminus when the seawater depth is larger or when the glacier base is fixed to the bedrock, which could lead to calving of smaller icebergs. However, water-free surface crevasses can penetrate (nearly) the entire ice thickness only in thicker ice slabs terminating in shallow seawater depths. This leads us to the conclusion that surface crevasses alone are not responsible for calving events in marine-terminating and thin glaciers. Citation: Duddu, R., J. N. Bassis, and H. Waisman (2013), A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics, Geophys. Res. Lett., 40, 3064–3068, doi:10.1002/grl.50602.
منابع مشابه
Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers
[1] Propagation of water-filled crevasses through glaciers is investigated based on the linear elastic fracture mechanics approach. A crevasse will penetrate to the depth where the stress intensity factor at the crevasse tip equals the fracture toughness of glacier ice. A crevasse subjected to inflow of water will continue to propagate downward with the propagation speed controlled primarily by...
متن کاملProgressive Damage Analysis of Laminated Composites using Continuum Damage Mechanics
In this paper, progressive damage and global failure of composite laminates under quasi-static, monotonic loading are investigated using 3D continuum damage mechanics. For this purpose, a finite element program has been developed using an eight-node 2D layered element including layer-wise plate theory. Damage analysis of a single orthotropic layer under various uniform in-plane and transverse l...
متن کاملThermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
متن کاملDerivation of deformation characteristics in fast-moving glaciers
Crevasse patterns are the writings in a glacier’s history book – the movement, strain and deformation frozen in ice. Therefore by analysis of crevasse patterns we can learn about the ice-dynamic processes which the glacier has experienced. Direct measurement of ice movement and deformation is time-consuming and costly, in particular for large glaciers; typically, observations are lacking when s...
متن کاملA damage model incorporating dynamic plastic yield surface
In this paper, a general elastoplastic-damage constitutive model considering the effect of strain rate has been developed. The derivation of this model has been cast into the irreversible thermodynamics with internal variables within the fundamentals of Continuum Damage Mechanics (CDM). The rate effect has been involved as an additional term into the plastic yield surface (dynamic plastic yield...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014